Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET.
نویسندگان
چکیده
Centrosomes represent the major microtubule organizing centers (MTOCs) of animal somatic cells and orchestrate bipolar spindle assembly during mitotic cell division. In meiotic cells, the kinesin HSET compensates for the lack of centrosomes by focusing acentrosomal MTOCs into two spindle poles. By clustering multiple centrosomes into two spindle poles, HSET also mediates bipolar mitosis in cancer cells with supernumerary centrosomes. However, although dispensable in non-transformed human cells, the role of HSET in cancer cells with two centrosomes has remained elusive. In this study, we demonstrate that HSET is required for proper spindle assembly, stable pole-focusing and survival of cancer cells irrespective of normal or supernumerary centrosome number. Strikingly, we detected pronounced acentrosomal MTOC structures in untreated mitotic cancer cells. While in most cancer cells these acentrosomal MTOCs were rapidly incorporated into the assembling bipolar spindle, some cells eventually established bipolar spindles with acentrosomal poles and free centrosomes. These observations demonstrate that acentrosomal MTOCs were functional and that both centrosomal and acentrosomal mechanisms were required for bipolar spindle organization. Our study shows that HSET is critical for clustering acentrosomal and centrosomal MTOCs during spindle formation in human cancer cells with two bona fide centrosomes. Furthermore, we show that in checkpoint-defective cancer cells, acentrosomal spindle formation and HSET-dependence are partially mediated by a constitutive activation of the DNA damage response. In summary, we propose that acentrosomal spindle assembly mechanisms are hyperactive in cancer cells and promote HSET, a key driver of acentrosomal spindle organization, as an attractive target for cancer therapy.
منابع مشابه
The Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organizati...
متن کاملKinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules.
Kinesin-14 family proteins are minus-end directed motors that cross-link microtubules and play key roles during spindle assembly. We showed previously that the Xenopus Kinesin-14 XCTK2 is regulated by Ran via the association of a bipartite NLS in the tail of XCTK2 with importin alpha/beta, which regulates its ability to cross-link microtubules during spindle formation. Here we show that mutatio...
متن کاملRecent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy
The kinesin class of microtubule-associated motor proteins present attractive anticancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the pr...
متن کاملHSET overexpression fuels tumor progression via centrosome clustering-independent mechanisms in breast cancer patients
Human breast tumors harbor supernumerary centrosomes in almost 80% of tumor cells. Although amplified centrosomes compromise cell viability via multipolar spindles resulting in death-inducing aneuploidy, cancer cells tend to cluster extra centrosomes during mitosis. As a result cancer cells display bipolar spindle phenotypes to maintain a tolerable level of aneuploidy, an edge to their survival...
متن کاملTransient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability
Polyploid cancer cells exhibit chromosomal instability (CIN), which is associated with tumorigenesis and therapy resistance. The mechanisms that induce polyploidy and how these mechanisms contribute to CIN are not fully understood. Here we evaluate CIN in human cells that become polyploid through an experimentally induced endoreplication cycle. When these induced endoreplicating cells (iECs) re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 125 Pt 22 شماره
صفحات -
تاریخ انتشار 2012